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    Introduction 
 Multivesicular bodies (MVBs) are mid-stage endosomes that 

contain intraluminal vesicles (ILVs). ILVs are generated by 

invagination and scission from the limiting membrane of the 

endosome. Ultimately, most ILVs are delivered to lysosomes, 

enabling degradation of transmembrane proteins and lipids 

( Katzmann et al., 2002 ;  Gruenberg and Stenmark, 2004 ; for 

reviews see  Babst, 2005 ;  Hurley and Emr, 2006 ). However, in 

certain specialized cells, MVBs also fuse with the plasma mem-

brane to secrete their ILVs as entities called exosomes, which 

subserve a variety of important functions in the immune sys-

tem and elsewhere ( Stoorvogel et al., 2002 ;  Thery et al., 2002 ; 

 Fevrier and Raposo, 2004 ). A great deal of attention has recently 

focused on understanding how proteins are sorted into MVBs 

and how ILVs actually form. 

 Among the proteins involved in creating ILVs are at least 

18 that were identifi ed via genetic studies of vacuolar protein 

sorting in the yeast  Saccharomyces cerevisiae . Interfering with 

the function of any these proteins leads to missorting of cargo 

normally destined for the ILV, causing it to accumulate on 

the limiting membranes of abnormal compartments that form 

adjacent to the yeast vacuole (its lysosome equivalent), the so-

called class E compartments ( Raymond et al., 1992 ). Homologues 

of these class E proteins are present in mammalian cells and their 

role in the formation of MVBs appears to be well conserved 

(for reviews see  Hurley and Emr, 2006 ;  Williams and Urbe, 

2007 ). Most of the class E proteins have also been implicated in 

the topologically similar process of viral budding ( Demirov and 

Freed, 2004 ;  Morita and Sundquist, 2004 ). 

 All but one of the class E proteins are intrinsically soluble, 

cycling on and off the membrane as peripheral membrane pro-

teins. Most are components of three large complexes, termed 

endosomal sorting complexes required for transport (ESCRTs), 

including ESCRT-I, -II, and -III (for reviews see  Babst, 2005 ; 

 Hurley and Emr, 2006 ;  Slagsvold et al., 2006 ;  Williams and Urbe, 

2007 ). These complexes are thought to cooperate with each 

other (and with additional factors) to promote cargo selection and 

ILV formation. Signals that bring ESCRT complexes to the mem-

brane include ubiquitin and phosphatidylinositol-3-phosphate, 

with current models suggesting that ESCRT complexes are 

recruited sequentially to ubiquitinated cargo on the endosomal 

membrane (for review see  Hurley and Emr, 2006 ). It is not yet 

clear how ESCRT complexes orchestrate ILV formation but it is 

thought that they mostly dissociate from the invaginating mem-

brane before the ILV is released because none end up at a high 

concentration within the lumen of the vesicle or viral particle 
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ndosomal sorting complex required for transport III 

(ESCRT-III) proteins function in multivesicular body 

biogenesis and viral budding. They are recruited 

from the cytoplasm to the membrane, where they assem-

ble into large complexes. We used  “ deep-etch ”  electron 

microscopy to examine polymers formed by the ESCRT-III 

proteins hSnf7-1 (CHMP4A) and hSnf7-2 (CHMP4B). 

When overexpressed, these proteins target to endosomes 

and the plasma membrane. Both hSnf7 proteins assemble 

into regular approximately 5-nm fi laments that curve and 

self-associate to create circular arrays. Binding to a co-

expressed adenosine triphosphate hydrolysis – defi cient 

mutant of VPS4B draws these fi laments together into tight 

circular scaffolds that bend the membrane away from 

the cytoplasm to form buds and tubules protruding from 

the cell surface. Similar buds develop in the absence of 

mutant VPS4B when hSnf7-1 is expressed without its 

regulatory C-terminal domain. We demonstrate that 

hSnf7 proteins form novel membrane-attached fi laments 

that can promote or stabilize negative curvature and 

outward budding. We suggest that ESCRT-III polymers 

delineate and help generate the luminal vesicles of multi-

vesicular bodies.
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inhibitory sequences ( Shim et al., 2007 ). Such deletions are 

thought to mimic the action of cellular ESCRT-III binding partners. 

One example of a binding partner that recruits and activates an 

ESCRT-III protein is the ESCRT-II subunit Vps25 (EAP25 in 

mammalian cells), which binds to the N-terminal half of Vps20 

( Teo et al., 2004 ;  Yorikawa et al., 2005 ;  Langelier et al., 2006 ). 

Other examples of interacting proteins opening ESCRT-III proteins 

seem likely to emerge. 

 Once assembled into complexes on the membrane, it is 

not yet clear how ESCRT-III proteins contribute to luminal vesicle 

formation or viral budding. Genetic studies in the yeast  S. cere-
visiae  suggest that they act late in the process, after ESCRT-I 

and ESCRT-II. Missing from current models is an understanding 

of which factors drive the required membrane deformation and 

eventual separation of ILVs from the limiting membrane of the 

endosome (for reviews see  Hurley and Emr, 2006 ;  Williams and 

Urbe, 2007 ). In the present study, we fi nd that the ESCRT-III 

proteins hSnf7-1/CHMP4A and hSnf7-2/CHMP4B assemble 

into circular membrane-associated polymers that can be engaged 

to deform the membrane to which they are attached. We pro-

pose that membrane-associated ESCRT-III polymers similar 

to these may contribute to delineating and generating vesicles 

within the lumen of the MVB. 

 Results 
 hSnf7 assembles into homopolymeric 
fi laments on the membrane 
 To study the organization of ESCRT-III – containing polymers 

by quick-freeze deep-etch EM (DEEM), we took advantage of 

our previous observation that overexpressed hSnf7 (CHMP4) 

proteins accumulate in patches on or adjacent to the plasma 

membrane as well as on internal, mostly endosomal, compart-

ments ( Lin et al., 2005 ;  Shim et al., 2007 ). The plasma mem-

brane is more accessible to DEEM than internal organelles 

because cells need only be  “ unroofed ”  to obtain expansive 

images of it and structures attached to it ( Heuser, 2000a , b ). 

The anaglyph in the top of  Fig. 1  shows a typical image of the 

inner surface of the plasma membrane of a COS-7 cell, which 

in this case is transiently transfected with a plasmid encoding 

full-length FLAG-tagged hSnf7-1 (CHMP4A). Visible on the 

membrane are the usual cortical cytoskeletal components, in-

cluding actin fi laments and polygonal clathrin lattices, but, in 

addition, there are abundant fi laments that are curved and inter-

connected to form a variety of circular arrays. In some areas, 

these new fi laments intermingle with actin and clathrin, whereas 

in other areas they are so abundant that they displace these nor-

mal residents of the plasma membrane. It is important to note 

that transiently transfected COS-7 cells produce ESCRT-III 

proteins at levels that greatly exceed the concentration of their 

endogenous counterparts (unpublished data), creating a situa-

tion in which we can study the behavior of transfected proteins 

without signifi cant contributions from endogenous proteins or 

binding partners. 

 Higher magnifi cation DEEM views of cells expressing 

hSnf7-1 or the related hSnf7-2 (CHMP4B) show that the novel 

fi laments have a unit diameter of  � 5-6 nm (including the  � 2-nm 

(for review see  Olver and Vidal, 2007 ). The release of ESCRT 

complexes from the membrane is probably driven by the AAA+ 

(ATPases associated with a variety of cellular activities) protein 

VPS4, of which there are two isoforms in mammalian cells, 

VPS4A and VPS4B/SKD1 ( Babst et al., 1998 ). 

 ESCRT-I and -II are stable heterooligomeric complexes 

( Katzmann et al., 2001 ;  Babst et al., 2002b ). Each has recently 

been crystallized both in pieces and as a complex ( Hierro et al., 

2004 ;  Teo et al., 2004, 2006 ;  Kostelansky et al., 2006 ,  2007 ) 

and a reasonable understanding of how these complexes inter-

face with ubiquitin, the membrane, and other components of the 

MVB sorting machinery is emerging (for reviews see  Hurley 

and Emr, 2006 ;  Williams and Urbe, 2007 ). 

 Less is known about the organization and interactions of 

proteins within the ESCRT-III complex. This complex consists of 

several related proteins that are recruited from the cytosol to the 

endosomal membrane, where they assemble into large detergent 

insoluble polymers ( Babst et al., 2002a ). Yeast has six ESCRT-III 

proteins, each a 200 – 250-residue protein with basic N-terminal 

and acidic C-terminal halves. Four of these proteins are thought 

to form the core ESCRT-III complex (Snf7p, Vps20p, Vps2p, 

and Vps24p), whereas two others (Did2p and Vps60p) associate 

with the core complex and may play regulatory roles ( Babst 

et al., 2002a ;  Nickerson et al., 2006 ). The ESCRT-III family is 

expanded to 11 proteins in humans, which are referred to either 

as human orthologues of their yeast counterparts or as charged 

MVB proteins (CHMPs). Although each of the six ESCRT-III 

proteins in yeast is needed for normal MVB biogenesis, there 

may be some functional redundancy among the 11 human proteins. 

Understanding how ESCRT-III components work together and 

why so many related proteins are needed for MVB biogenesis 

clearly requires additional insight into the organization and func-

tion of the complex or complexes that they form. 

 A recent crystal structure of part of the ESCRT-III pro tein 

hVps24 (CHMP3) showed that it consists of an  � 7-nm-long 

 � -helical hairpin buttressed by three shorter helices ( Muziol 

et al., 2006 ). Based on homology, it seems likely that other 

ESCRT-III proteins share a similar structural core. Clues about 

how ESCRT-III proteins assemble into large complexes come 

from the several types of contacts between hVps24 protomers 

in the crystal, any or all of which could be involved in ESCRT-III 

polymerization. 

 Recent studies support the idea that individual ESCRT-III 

proteins have an intrinsic ability to bind to membranes that is 

regulated by autoinhibitory sequences located near their C termini 

( Muziol et al., 2006 ;  Zamborlini et al., 2006 ;  Shim et al., 2007 ). 

In one case (the crystallized fragment of hVps24), basic residues 

spread along a gently curved surface have been shown to be 

necessary for membrane binding ( Muziol et al., 2006 ) and similar 

charge-based interactions may be at least partially responsible 

for association of the other ESCRT-III proteins with membranes. 

Binding to the membrane is thought to coincide with assembly 

of the ESCRT-III complex, leading to a model in which  “ closed ”  

ESCRT-III proteins are soluble, whereas  “ open ”  ESCRT-III pro-

teins on the membrane are available for interaction with other 

ESCRT components. Experimentally, membrane binding and 

complex assembly can be elicited by deleting C-terminal auto-
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overexpressed hSnf7-1 remains insoluble after treatment with 

non denaturing detergents ( Lin et al., 2005 ;  Shim et al., 2007 ). 

The connections between adjacent fi laments may contribute 

to stabilizing the circular patterns formed by the fi laments. 

Particles corresponding at least in part to transmembrane pro-

teins appear to be confi ned both at the center of the hSnf7 arrays 

and between the fi laments, which suggests that one function 

of hSnf7 polymers may be to control the distribution of pro-

teins in the membrane in a manner similar to that previously 

proposed for actin fi laments close to the plasma membrane 

( Morone et al., 2006 ). 

 Several observations indicate that these novel fi laments 

are predominantly homopolymers of hSnf7. Most striking is 

their altered appearance when GFP is fused to the C terminus of 

hSnf7-1 ( Fig. 2 ). Filaments built from hSnf7-1 – GFP are wider and 

thickness of the platinum replica that coats them) and appear to 

be tightly associated with the plasma membrane ( Fig. 1 B ). 

Transverse striations can be seen faintly in many regions along 

the fi laments. When most distinct, these striations repeat every 

 � 4 nm ( Fig. 1 C , a). The fi laments frequently associate with 

each other laterally, either forming focal contact points between 

single fi laments ( Fig. 1 C , b; and  Fig. 1 D , b) or generating wider 

strands that contain two or more intertwined fi laments. Larger bun-

dles containing four or more strands tend to be less tightly asso-

ciated with the membrane but are split into single-diameter 

fi laments at the membrane ( Fig. 1 C , c and d; and  Fig. 1 D , c). 

Sometimes fi laments branch without apparently changing their 

diameter, which suggests that there are numerous ways in 

which hSnf7 protomers interact with each other. The length of the 

hSnf7 fi laments offers a straightforward explanation for why 

 Figure 1.    hSnf7 proteins form curved fi la-
ments on the plasma membrane.  Shown in 
3D are anaglyphs of the inside of the plasma 
membrane of COS-7 cells expressing the con-
structs indicated. Use view glasses for the 3D 
structure (left = red). (A) Plasma membrane 
of cell expressing FLAG hSnf7-1. (B) Higher 
magnifi cation views of membrane coated with 
fi laments of FLAG hSnf7-1 (left), FLAG hSnf7-2 
(center), and FLAG hSnf7-1 (right). Bars, 100 nm. 
(C) High magnifi cation views of FLAG hSnf7-1 
fi laments. (D) Clathrin lattice (a), two additional 
panels of FLAG hSnf7-1 fi laments (b and c), and 
three views of actin fi laments (d, e, and f). Fila-
ments in C and D have been highlighted for clarity. 
Panels in C and D are each 100 nm across.   
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and saponin to extract plasmalemmal lipids ( Heuser and Kirschner, 

1980 ). In nontransfected cells, this procedure provides views of 

a subplasmalemmal cytoskeleton that has been converted by 

chemical fi xation into a microtrabecular meshwork ( Fig. 3 , middle, 

see cell on the right;  Heuser, 2002 ). Cells expressing hSnf7-1 

additionally contain characteristic domains of interconnected, 

roughly circular arrays of fi laments ( Fig. 3 , middle and bottom). 

These fi laments can be immunodecorated with a gold-conjugated 

antibody against a FLAG epitope tag on hSnf7-1, confi rming that 

they contain hSnf7-1 (not depicted). 

 Both on unroofed plasma membranes and along the top 

surface of hSnf7-expressing cells, there is considerable variation 

in the curvature of individual fi laments and the spacing be-

tween adjacent fi laments that create a range of hSnf7-based 

arrays. A consequence of this variation that is most apparent 

when viewing the tops of cells is that in the closely spaced 

arrays, central rings tend to rise above those at the periphery 

( Fig. 3 , bottom left). This phenomenon is particularly strik-

ing with polymers formed from GFP-tagged hSnf7-1 ( Fig. 3 , 

bottom right). 

 An important functional difference between hSnf7-1 with 

and without GFP fused to its C terminus is that overexpressed 

hSnf7-1 – GFP strongly inhibits MVB maturation and viral 

budding, whereas hSnf7-1 lacking GFP does not ( von Schwedler 

et al., 2003 ). This could be caused by the attached GFP per-

turbing the protein ’ s normal closed conformation, effectively 

locking hSnf7 into an open state. Alternatively, the GFP might 

interfere with recruitment of specifi c C-terminal binding part-

ners. Either way, we wondered whether there might be a corre-

lation between the arrangement of hSnf7 fi laments, membrane 

eversion, and the normal functioning of ESCRT-III proteins in 

the MVB pathway. We therefore decided to study the effects of 

manipulating hSnf7 ’ s C terminus by either adding binding part-

ners or deleting domains. 

bumpier than those formed by hSnf7-1 alone, as would be expected 

from doubling the mass of each subunit (both hSnf7-1 and GFP 

are  � 25 kD in mass). Additional support for the idea that the 

fi laments are primarily polymers of hSnf7 includes the fact that 

the fi laments are present only in a subset of cells after transient 

transfection with hSnf7 and the fact that the fi laments can be 

decorated specifi cally with gold-labeled antibody recognizing 

an epitope tag on hSnf7 (see Fig. 4, top; and not depicted). 

 A difference between the fi laments formed by hSnf7-1 with 

no tag or a small epitope tag and those formed by hSnf7-1 – GFP 

is that the latter are frequently tightly associated with each other, 

often to the point of creating compact circular arrays that appear 

as confl uent domains of protein. Such tight structures are not seen 

in cells overexpressing hSnf7-1 without GFP (compare  Figs. 

1 and 2 ). Their formation is not caused by the dimerization of 

GFP because mutating GFP to reduce its affi nity for itself ( Snapp 

et al., 2003 ) does not change their appearance (not depicted). 

Fusing GFP to the C terminus of hSnf7-1 must therefore expose 

something within hSnf7-1 that enhances lateral interactions 

between fi laments. 

 Two limitations to imaging unroofed cells are, fi rst, that 

we can only examine the bottom or ventral surface of the cell 

where changes in the shape of the membrane are constrained 

and, second, that we have to lyse the cells during sample prepara-

tion. To look instead at the dorsal or top surfaces of nondisrupted 

cells, we switched to freeze-drying and platinum-replicating 

whole cells. As expected, cells overexpressing hSnf7-1 dis-

play areas with subtle circular patterns on their top surfaces 

that are comparable in size and organization to the curved fi la-

ment arrays seen on the plasma membrane of unroofed cells 

( Fig. 3 , top). 

 To study the top surface of the cell in more detail, we ap-

plied a method for imaging the cell cortex in which cells are 

chemically fi xed and then treated with a mixture of Triton X-100 

 Figure 2.    Filaments containing hSnf7-1 – GFP 
show their GFP.  Adding GFP to the C termi-
nus of hSnf7-1 (hSnf7-1 – GFP) creates bumpy, 
tightly wound fi laments on the inner surface of 
the plasma membrane. Bar, 100 nm.   
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VPS4 is thought to hydrolyze ATP and disassemble ESCRT-III 

complexes, most likely by unfolding and removing individ-

ual protein subunits from the polymeric ESCRT-III complex. 

Recent studies reveal that VPS4 binds directly to a microtubule 

interacting and traffi cking – interacting motif present near the 

C termini of CHMP1, CHMP2, and CHMP3 ( Obita et al., 2007 ; 

 Stuchell-Brereton et al., 2007 ). Other sequences are likely to be 

responsible for VPS4 binding to hSnf7 (CHMP4) proteins. 

 To gain insight into how VPS4 might affect the hSnf7 

polymers examined here, we coexpressed a  “ substrate trap ”  

 A hydrolysis-defective mutant of VPS4B 
binds to hSnf7 polymers and promotes 
membrane eversion 
 Among proteins that interact with ESCRT-III family members, 

the most general appears to be the AAA+ ATPase VPS4 (of 

which there are two isoforms in mammalian cells, VSP4A and 

VPS4B/SKD1). This ATPase binds to most if not all of the indi-

vidual ESCRT-III proteins, albeit with varying affi nity ( von 

Schwedler et al., 2003 ;  Scott et al., 2005b ;  Lottridge et al., 2006 ; 

 Tsang et al., 2006 ;  Zamborlini et al., 2006 ;  Shim et al., 2007 ). 

 Figure 3.    hSnf7 fi laments on the top surface 
of the cell.  (top) Patterns created by hSnf7-1 
fi laments on the outer surface of whole cells. 
Shown is the top surface of a COS-7 cell 
transfected with FLAG hSnf7-1, fi xed, and 
replicated without disruption. Note the subtle 
circular patterning of particles within the mem-
brane. (middle) Views of hSnf7-1 fi laments in 
the subplasmalemmal  “ membrane skeleton ”  
revealed by extracting fi xed whole cells with 
detergent. The cell on the left expresses FLAG 
hSnf7-1, whereas the one on the right does 
not. (bottom left) Fixed and extracted cell ex-
pressing higher levels of FLAG hSnf7-1. (bot-
tom right) Fixed and extracted cell expressing 
hSnf7-1 – mGFP. Bars, 100 nm.   
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models of VPS4B operating as an oligomer ( Scott et al., 2005a ). 

Although the density of VPS4B particles varied widely, there 

were many arrays on which the particles were essentially con-

fl uent. These VPS4B oligomers not only obscured the under-

lying hSnf7-1 fi laments but also tightened the arrays to create 

compact circular structures on the membrane. 

 Importantly, the change in the hSnf7 fi lament arrays 

caused by binding to VPS4(E235Q) was accompanied by the 

appearance of distortions in the membrane at the center of the 

arrays. This could be glimpsed in views of unroofed plasma 

membranes, where dense hSnf7 arrays had small central gaps 

or holes that appeared slightly everted (presumably limited by 

mutant of VPS4B, VPS4B(E235Q), with hSnf7-1 in COS-7 cells. 

This mutant form of VPS4B is unable to hydrolyze ATP be-

cause of a change in its Walker B motif and therefore binds 

tightly to its protein substrates ( Hanson and Whiteheart, 2005 ). 

We found that VPS4B(E235Q) with or without a GFP tag ac-

cumulated on hSnf7 fi laments, where it appeared as a large 

particle along the cytoplasmic surface of the fi laments ( Fig. 4 ). 

These particles were recognized by antibodies against epitope 

tags or GFP attached to VPS4, which confi rms that, as expected, 

they are VPS4B(E235Q) ( Fig. 4 , top). Their sizes range from 

 � 10 to  � 16 nm, which is signifi cantly larger than expected for 

a VPS4B-GFP monomer and could instead be consistent with 

 Figure 4.    hSnf7/CHMP4 fi laments bind 
VPS4B(E235Q).  Anaglyphs of plasma mem-
branes from COS cells expressing FLAG 
hSnf7-1 and VPS4B(E235Q)-GFP. (top) Immuno  -
decoration with antibodies against FLAG tag on 
FLAG hSnf7-1 (left) and GFP in VPS4B(E235Q)-
GFP (right). Yellow circles have been super-
imposed on the 18-nm gold particles for clarity. 
Note that gold particles obscure individual 
VPS4B particles only in the right panel. (middle) 
Circles of hSnf7-1 fi laments with an increasing 
number of VPS4B(E235Q)-GFP particles bound. 
(bottom) Low magnifi cation survey view of COS-7 
cell plasma membrane showing hSnf7-1 arrays 
heavily decorated with VPS4B(E235Q)-GFP. 
Note that all three have small central holes. 
Bars, 100 nm.   
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VPS4B(E235Q) particles on the detergent-extracted scaffolds 

because these are external views of the fi laments and would 

not be expected to show proteins attached to the opposite cyto-

plasmic surface. 

 The subplasmalemmal scaffolds could also be seen to 

good advantage in replicas of unextracted cells when and where 

the membrane happened to peel back during the freeze-drying 

process ( Fig. 7 ). This is a fortuitous occurrence that provides 

clean and undistorted views of submembranous protein lattices 

(unpublished data). In the case of cells expressing hSnf7 and 

VPS4B(E235Q), these views confi rm that hSnf7 fi laments ex-

tend beyond the perimeter of the buds and tubules to create a 

circular base. Examination of the spacing between adjacent fi la-

ments shows that the fi laments are tightly and regularly packed 

within and directly around the everting tubules and may become 

less interconnected as the lattice extends further away from 

the tubule. Not all of the lattices have central eversions, per-

haps because those that recruit less VPS4B do not undergo the 

required structural change. 

the fact that the ventral surface of the cell cannot extend far 

before reaching the glass on which the cells are growing; 

 Fig. 4 ). Much more obvious changes could be seen on the 

tops of freeze-dried whole cells. There, it was apparent that co-

expressing hSnf7 and VPS4B(E235Q) led to the formation of 

buds and occasionally tubules that extended out from the cell 

( Fig. 5 ). These measured  � 100 – 120 nm in diameter and ex-

tended to varying heights. They could easily be distinguished 

from microvilli by their comparatively large size because micro-

villi are only  � 50 nm in diameter. Similar tubules developed on 

cells coexpressing hSnf7-2 and VPS4B(E235Q)-GFP as well as 

hSnf7-1 and VPS4B(E235Q)-myc (unpublished data). 

 We examined the protein scaffold lining these tubules by 

again extracting fi xed cells with detergents, which revealed 

closely spaced and highly regular subplasmalemmal fi laments 

with a unit diameter similar to the fi laments seen on top of cells 

expressing only hSnf7 ( Fig. 6 ). These fi laments could be immuno-

decorated with antibodies against epitope tags on either hSnf7 

or VPS4B (unpublished data). Note that there are no visible 

 Figure 5.    Buds and tubules protrude from the 
top surface of cells coexpressing hSnf7-1 and 
VPS4B(E235Q)-GFP.  (top) Overview of fi xed 
whole cell. (bottom) Higher magnifi cation views 
of selected buds and tubules showing the range 
of observed structures. Bars, 100 nm.   
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These look similar to the buds seen on cells coexpressing full-

length hSnf7 and VPS4B(E235Q), although they are narrower in 

diameter ( � 80 vs.  � 100 – 120 nm) and only rarely elongate into 

tubules. Again, concentrated at the centers or apices of these 

buds are particles that probably correspond to trapped transmem-

brane proteins. Not surprisingly, plasma membrane buds were 

easier to fi nd in cells that expressed a mutant form of hSnf7(1 – 116) 

in which a cysteine replaces serine at residue two because this 

mutant undergoes palmitoylation and is more effi ciently targeted 

to the plasma membrane than normal ( Lin et al., 2005 ). 

 Further examination of cells expressing hSnf7(1 – 116) (with 

either cysteine or the wild-type serine at residue two) revealed that 

fi ne fi laments are visible on the plasma membrane. These can be 

 Polymers formed by an hSnf7-1 fragment 
suggest a role for the N-terminal region in 
bud formation 
 To further explore the relationship between hSnf7 and membrane 

eversion, we studied the effects of removing the C-terminal half 

of the hSnf7-1 protein. We used an N-terminal hSnf7-1 fragment 

(residues 1 – 116) that we previously showed associated well with 

the plasma membrane ( Lin et al., 2005 ). This fragment retains 

the core  � -helical hairpin predicted by the CHMP3/hVps24 crys-

tal structure ( Muziol et al., 2006 ) but is constitutively open and 

does not interact with VPS4B ( Lin et al., 2005 ). Strikingly, whole 

cells expressing hSnf7(1 – 116) have regions on their dorsal sur-

faces that are abundantly studded with distinctive buds ( Fig. 8 ). 

 Figure 6.    Protein scaffolds line buds and 
tubules in cells coexpressing hSnf7-1 and 
VPS4B(E235Q)-GFP.  Fixed whole cells extracted 
with detergents after fi xation show submembra-
nous skeleton. (top) Uniform budlike structures 
on region of a cell. (bottom) Buds and tubules 
of varying lengths along the surface of another 
cell. Bars, 100 nm.   
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already impaired and endogenous ESCRT proteins are associated 

with VPS4B(E235Q);  Lin et al., 2005 ), we prepared unroofed 

plasma membranes for DEEM, taking advantage of the fact that 

VPS4B(E235Q) can also be found on both endosomes and the 

plasmalemma ( Lin et al., 2005 ;  Booth et al., 2006 ). On these 

membranes, immunoreactive VPS4B(E235Q)-GFP again appears 

as particles 10 – 16 nm in diameter ( Fig. 9 ). These particles typi-

cally appear in chains, as if they are decorating an underlying 

threadlike polymer on the membrane (likely one composed of 

endogenous ESCRTs, although we cannot rule out other pos-

sibilities). The chains of VPS4B(E235Q) particles often curve to 

form circles  � 100 nm or more in diameter, reminiscent of indi-

vidual rings created by overexpressed full-length hSnf7. Some-

times, the circles of mutant VPS4B particles surround circular or 

helical arrays of fi laments that distort the plasma membrane, 

pushing it outwards. One possibility is that these represent 

endogenous ESCRT-III fi laments  “ corralled ”  by mutant VPS4. 

Alternatively, these could be coat components of an unidentifi ed 

virus that is intrinsic to our cultured cells and whose budding has 

been blocked by expression of the mutant VPS4. 

 Discussion 
 MVB biogenesis is governed at least in part by transient recruit-

ment of ESCRT complexes and associated proteins to the limiting 

membrane of the endosome. Among the proteins involved in 

seen on the inner surface of the membrane in unroofed cells 

( Fig. 8 , top right) as well as in freeze-fracture images of cells 

grown on sapphire ( Fig. 8 , middle right) and on top of fi xed 

whole cells that have been extracted with detergent ( Fig. 8 , bottom 

right). In many cases, the fi laments associate laterally with each 

other and curve into circular arrays. The fact that the pattern of 

these fi lament arrays is particularly evident in freeze-fracture 

images demonstrates that the protein directly or indirectly affects 

the structure of the membrane bilayer. A peculiarity of the hSnf7

(1 – 116) fi laments visible in unroofed cells is that they are often 

decorated on their cytoplasmic surfaces with many copies of 

an unusually large particle ( > 20 nm in diameter). Whether these 

particles are normal binding partners for the ESCRT-III machin-

ery (i.e., ESCRT-I and ESCRT-II complexes) or are something 

unrelated has yet to be determined. 

 VPS4B(E235Q) mutant accumulates in 
rings on membranes of cells even with no 
exogenous ESCRT-III expression 
 To determine whether fi laments or scaffolds anything like those 

shown in the previous section form in cells expressing only 

endogenous levels of ESCRT-III components, we fi nally exam-

ined stable tetracycline-inducible HEK293 cell lines in which 

the ESCRT pathway can be inhibited by regulated expression of 

VPS4B(E235Q)-GFP ( Lin et al., 2005 ). A few hours after adding 

tetracycline (when endosome biogenesis and viral budding are 

 Figure 7.    Spontaneous tears along the top sur-
face of fi xed whole cells reveal the fi ne structure 
of the underlying membrane skeleton (with no 
detergent treatment).  (top) Survey view. (bottom) 
Higher magnifi cation views. Bars, 100 nm.   



JCB • VOLUME 180 • NUMBER 2 • 2008 398 

 Structure of hSnf7 (CHMP4) polymers, 
novel fi laments on the membrane 
 The most signifi cant observation in this study is that hSnf7 pro-

teins assemble into novel fi laments that attach to the membrane 

and are capable of distorting it. Although we cannot defi ne the 

arrangement of protein subunits within these fi laments, some 

possibilities can be gleaned from the recent crystal structure of 

a fragment of another ESCRT-III protein, hVps24 (CHMP3) 

( Muziol et al., 2006 ). The core of this ESCRT-III protein is an 

 � 7-nm-long  � -helical hairpin, which in the crystal binds to a 

partner subunit to form an antiparallel dimer. To fi t such dimers 

into the smallest fi laments seen here, the long axes of the helical 

formation of ILVs must be factors that select membrane and 

cargo for incorporation into the ILV and factors that promote 

the membrane deformation needed to drive ILV formation. 

Here, we found that the ESCRT-III proteins hSnf7-1 (CHMP4A) 

and hSnf7-2 (CHMP4B) assemble into fi lamentous polymers 

on membranes. The circles formed by these fi laments may con-

tribute both to defi ning the contents of a nascent ILV and de-

forming the membrane to create it. Insight into the function of 

ESCRT-III proteins has been slow in coming ( Russell et al., 2006 ) 

and the novel properties of the subset of ESCRT-III proteins 

described here should form the basis for further exploration of 

their role in ILV formation. 

 Figure 8.    hSnf7-1 N-terminal fragment (1 – 116) 
drives formation of everting buds.  (left) Top sur-
face of a fi xed whole cell expressing hSnf7-1
(1 – 116). (top right) Filaments and large particles 
on the inner surface of the plasma membrane 
of cells expressing hSnf7-1(1 – 116). (right, mid-
dle) Freeze fracture image of membrane from 
cells expressing hSnf7-1(1 – 116) grown on sap-
phire. (bottom right) Selected views from fi xed 
whole cells extracted with detergents after fi xa-
tion. Bars, 100 nm.   

 Figure 9.    VPS4B(E235Q)-GFP forms large 
corral-like rings on the plasma membrane of 
cells expressing only endogenous ESCRT-III 
proteins.  (top) Overview of plasma membrane 
from a cell expressing only VPS4B(E235Q)-
GFP. A GFP tag on VPS4 was used to selec-
tively immunodecorate these particles with 18 
nm gold. (bottom) Selected higher magnifi ca-
tion views of rings formed by VPS4B(E235Q)-
GFP. Bars: (top) 500 nm; (bottom) 100 nm.   
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 Although we focused our study on plasma membrane 

polymers for technical reasons (e.g., ease of visibility), there is 

good evidence that ESCRT proteins can function on the plasma 

membrane as well as on the endosome. Most proteins involved 

in MVB biogenesis (including hSnf7 and VPS4) have been 

 implicated in the budding of several enveloped viruses, which 

at least in some cases happens on the plasma membrane ( von 

Schwedler et al., 2003 ;  Fisher et al., 2007 ;  Fraile-Ramos et al., 

2007 ). Moreover, several recent studies have shown that there 

are endosome-like domains in the plasma membrane, which 

in turn has led to the proposal that exosome-like vesicles 

might bud directly from the plasmalemma ( Booth et al., 2006 ; 

 Nydegger et al., 2006 ). Finally, the ESCRT machinery has 

recently been shown to be necessary for completing cytokine-

sis, again requiring function at the plasma membrane ( Carlton 

and Martin-Serrano, 2007 ;  Morita et al., 2007 ). Thus, at least 

in certain situations, the ESCRT machinery, probably includ-

ing the ESCRT-III complex, is recruited to and operational at 

the plasma membrane. 

 ESCRT-III scaffolds and membrane 
deformation 
 Current thinking is that one way in which proteins deform 

membranes is by attaching tightly to them and imposing their 

intrinsic geometry upon them. Well-studied examples of this 

include the curved polymers formed by coat proteins (i.e., the 

binding of clathrin lattices to the plasmalemma during coated 

pit formation;  Heuser, 1989a ;  Hinrichsen et al., 2006 ) and viral 

structural proteins (i.e., the binding of viral matrix proteins to 

the plasmalemma to form viral particles;  Karacostas et al., 1989 ; 

 Morita and Sundquist, 2004 ) as well as the more localized 

deformations associated with curved helical proteins containing 

Bin/amphiphysin/Rvs (BAR) domains and related structural 

motifs ( Peter et al., 2004 ;  McMahon and Gallop, 2005 ;  Itoh and 

De Camilli, 2006 ;  Shimada et al., 2007 ). 

 In the case of the ESCRT pathway and ILV formation, 

there has been to date little structural evidence for involvement 

of complexes with the ability to distort the membrane. Our im-

ages suggest that ESCRT-III subunits assembled into fi laments 

and circular lattices may be able to drive and/or stabilize nega-

tive membrane curvature such as is needed to generate vesicles 

that bud away from the cytoplasm. The mechanism for these ef-

fects could be similar to that used by BAR domain – containing 

proteins ( Peter et al., 2004 ;  McMahon and Gallop, 2005 ), with 

the shape of the ESCRT-III polymers promoting negative rather 

than positive curvature. The idea that proteins with an  “ inverse ”  

BAR domain shape might promote negative curvature (and mem-

brane evolution) has been proposed ( McMahon and Gallop, 

2005 ) and, very recently, demonstrated in a study of two actin 

binding proteins involved in the formation of fi lopodia, missing 

in metastasis, and IRSp53 ( Mattila et al., 2007 ). These proteins 

contain a gently curved helical domain and create everting tubules 

lined on their interior with the proteins. It is not diffi cult to imagine 

that dimers of the  � -helical hairpin at the core of ESCRT-III 

subunits would use a positively charged, gently convex surface 

( Muziol et al., 2006 ) to create the kind of membrane distortions 

described in the present paper. 

hairpins would have to run roughly parallel to the fi lament. 

This could be accomplished by a simple tip-to-tip interaction 

between dimers as occurs in the crystal or by opening up the 

hairpins to allow other types of intersubunit interactions not 

seen in the crystal. The variety of interconnections that we see 

between adjacent hSnf7 fi laments indicates that there is more 

than one way for these subunits to interact with each other, and 

coassembly of hSnf7 with other ESCRT-III proteins is likely to yet 

further expand the ways in which the subunits associate with each 

other. Our fi nding that fi laments also form when the N-terminal 

half of hSnf7-1 (which contains little besides the  � -helical hairpin) 

is expressed ( Fig. 9 ) suggests that the N-terminal helical hairpin 

domain by itself is suffi cient to allow polymer assembly. 

 Once assembled and attached to a membrane, hSnf7 fi la-

ments have an intrinsic tendency to curve ( Figs. 1 – 3 ). This ap-

pears to derive from the shape of the subunits and/or the way in 

which they interact with each other. The degree of curvature is 

not fi xed because the path taken by individual fi laments varies 

widely (e.g., compare the curvature of a fi lament near the center 

of an array with that of one at its periphery). Interfi lament con-

tacts may contribute to stabilizing or even creating the circular 

arrays. When the fi laments are tightly associated with each 

other and the membrane, their shape could play a role in de-

forming the membrane, as will be further discussed in the fi nal 

section of the Discussion. 

 Relevance of hSnf7/CHMP4 polymers to a 
native ESCRT-III complex 
 It is important to emphasize that the polymers studied in this 

paper arise from overexpressed proteins and do not necessarily 

correspond to normal intermediates in the ESCRT pathway. 

Both up- and downstream components of the ESCRT pathway 

have been bypassed or overwhelmed by hSnf7 overexpression, 

allowing unopposed growth of hSnf7 polymers that may ex-

aggerate or even change their normal effects on membranes. 

There are, however, several reasons to believe that these over-

grown polymers reveal important characteristics of ESCRT-III 

proteins that are relevant to understanding how these proteins 

contribute to MVB biogenesis. These include the facts that the 

fi laments (a) are highly organized, (b) bind specifi cally to rele-

vant proteins such as VPS4B ( Figs. 4 – 7 ), (c) bind tightly to both 

the plasmalemma and endosomes (this paper;  Lin et al., 2005 ; 

 Shim et al., 2007 ), (d) do not form nonspecifi c aggregates with 

other cellular proteins, (e) share properties with complexes of 

endogenous ESCRT proteins trapped by inhibiting the path-

way in yeast, including being detergent insoluble and extremely 

large, and (f) resemble structures trapped by expressing mu-

tant VPS4B(E235Q) on its own ( Fig. 9 ). The fact that individual 

hSnf7 proteins homooligomerize into regular structures leads us 

to suggest that ESCRT-III complex could be either a defi ned 

heteropolymer, as is currently assumed, or a series of intercon-

nected homopolymers. Our preliminary studies of other ESCRT-III 

proteins support the idea that each can form homopolymers that 

when opened or activated recruit other ESCRT-III components 

( Shim et al., 2007 ). Further exploration of the structure of com-

plexes containing multiple ESCRT-III proteins and their effects 

on membranes will clearly be an important next step. 
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 Cell growth 
 COS-7 cells were grown in DME (Invitrogen) containing 5% fetal bovine 
serum (Invitrogen), 5% supplemented calf serum (Thermo Fisher Scientifi c), 
and 2 mM  L- glutamine. TREx-HEK293 cells expressing VPS4B(E235Q)-GFP 
were grown in DME containing 10% tetracycline-free fetal bovine serum 
(Atlanta Biologics), 2 mM  L -glutamine, 5  � g/ml blasticidin, and 100  � g/ml 
zeocin as described previously ( Lin et al., 2005 ). Expression of VPS4B(E235Q) 
in these cells was induced by adding 0.5  � g/ml tetracycline for 4 – 6 h. 

 Transfections and sample preparation for DEEM 
 For DEEM, cells were grown on 3  ×  3-mm glass (or where indicated, sap-
phire) coverslips. COS-7 cells were transfected with plasmids using Lipo-
fectamine 2000 (Invitrogen) according to the manufacturer ’ s instructions 
and were used 18 – 24 h after transfection. To prepare unroofed cells, cover-
slips were briefl y rinsed in serum-free, Hepes-buffered Ringer solution (30 mM 
Hepes, pH 7.4, 100 mM NaCl, and 2 mM CaCl 2 ) and then unroofed 
using a brief pulse of ultrasound as described previously ( Heuser, 2000a ) 
in an intracellular buffer (30 mM Hepes, pH 7.2, 70 mM KCl, 5 mM 
MgCl2, and 3 mM EGTA). Samples were immediately fi xed in the same 
buffer containing 2% glutaraldehyde or 4% paraformaldehyde. To prepare 
whole cells, cells on coverslips were simply fi xed in Ringer solution contain-
ing 2% glutaraldehyde or 4% paraformaldehyde. To extract fi xed whole 
cells with detergent, fi xed coverslips were incubated for at least 2 h in buf-
fer containing 1% Triton X-100 (Sigma-Aldrich) and 0.1% saponin. 

 Immunogold antibody decoration 
 For antibody decoration, samples fi xed in formaldehyde were quenched in 
50 mM NH 4 Cl, 50 mM lysine, and 50 mM glycine. Samples were then 
blocked in 30 mM Hepes, pH 7.4, 100 mM NaCl, and 2 mM CaCl 2  con-
taining 1% bovine serum albumin, incubated in primary antibody for 1 h, 
washed, incubated with 18-nm gold-conjugated goat anti – rabbit or anti –
 mouse, washed again, and postfi xed in buffer containing 2% glutaralde-
hyde. Primary antibodies used were rabbit anti-GFP and rabbit and mouse 
(M2) anti-FLAG (Sigma-Aldrich). 

 Freezing, replicating, and imaging samples 
 Coverslips with samples to be frozen were washed in water and then 
quick-frozen by abrupt application (slamming) of the coverslip onto a liquid 
helium – cooled copper block using a cryopress ( Heuser et al., 1979 ,  1989b ). 
Coverslips were stored in liquid nitrogen until mounting in a freeze-etch 
device (Oerlikon Balzers), where they were immediately warmed to  � 80 ° C, 
freeze-dried for 15 min in vacuo, and replicated with 2 nm of platinum, 
which was vacuum evaporated onto them from 24 °  above horizontal while 
they rotated at 20 rpm. For freeze-fracture of cells grown on sapphire, the 
coverslip was frozen upside down, stored in liquid nitrogen, mounted in 
the freeze-etch device, warmed to  � 105 ° C, fractured by popping the sap-
phire off with the knife, etched by sitting for 2 min in vacuo, and then repli-
cated as above. 

 In all cases, replicas were separated from the coverslips by fl otation 
on concentrated hydrofl uoric acid, and washed briefl y with 4% sodium hy-
pochlorite (bleach) and several rinses of water before being retrieved on 
400-mesh Formvar-coated grids (Electron Microscopy Sciences). These were 
then viewed with a standard transmission EM (JEOL) operating at 100 kV 
and imaged at two different degrees of tilt ( ± 10 ° ) with standard EM fi lm. 
Thereafter, the stereo pairs of fi lm were aligned by superimposition on 
a copy stand and rerecorded as 4,492  ×  3,328-pixel (17-Mp) digital 
images with a digital single-lens refl ex camera (EOS-1Ds Mark II; Canon). 
Finally, the digital image pairs were converted (one to red and the other 
to green), layered on top of each other with the screen blending mode in 
Photoshop (Adobe), aligned to each other, and, where necessary, adjusted to 
equalize their brightness and contrast to create the fi nal 3D anaglyphs 
shown here ( Heuser, 2000b ). 
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 There are several questions that need to be answered be-

fore we can propose a specifi c model for the role of ESCRT-III 

polymers in MVB biogenesis. The most important is when and 

where the polymers assemble and are subsequently removed. 

Defi ning when ESCRT components dissociate from each other 

and the membrane is particularly important because their con-

tinued presence on the membrane of a vesicle after it is released 

from the limiting membrane would trap them inside the lumen 

of the vesicle. This is inconsistent with current data showing 

that ESCRT proteins are not present at a high concentration in 

either viral particles or ILVs and exosomes (for review see  Olver 

and Vidal, 2007 ). One way out of this dilemma would be for 

ESCRT-III polymers to initiate membrane deformation but 

remain only at the perimeter or evolving neck of the vesicle, 

perhaps as a result of ongoing and closely coupled VPS4-driven 

disassembly of the ESCRT complexes. Changes in the lipid 

composition of the evolving vesicle could play a role in vesicle 

evolution, as has been previously suggested for lysobisphospha-

tidic acid, a cone-shaped lipid known to be present at high con-

centrations in ILVs ( Matsuo et al., 2004 ). 

 The Snf7 subfamily of ESCRT-III proteins may have a 

unique and particularly important role in the steps leading to 

creation of ILVs, particularly if they recruit other ESCRT-III 

proteins and their specifi c binding partners to join the poly-

mers they form. Indeed, evidence for a special role for hSnf7 

comes from studies of viral budding, where recent data shows 

that the late domain-interacting protein Alix only functions in 

viral release when its ability to recruit hSnf7 is intact ( Fisher 

et al., 2007 ). 

 Current understanding of how membrane budding into 

the MVB is driven is clearly limited. Although ESCRT-III pro-

teins have been implicated in this process, evidence for their 

involvement has been indirect and primarily based on the 

development of a class E compartment in yeast when ESCRT-III 

function is impaired. The images presented here of hSnf7 

show that even without upstream regulatory factors, this pro-

tein is capable of forming uniform circular structures that can 

be induced to drive formation of everting buds and tubules. 

These images are the fi rst to show that an ESCRT-III polymer 

is associated with changes in the curvature of a membrane. 

Important future steps will be to compare the structure of other 

ESCRT-III homo- and heteropolymers with those of hSnf7 to 

determine how these polymers interface with other compo-

nents of the ESCRT machinery and fi nally to visualize the ac-

tual events that occur on isolated, functional MVBs as they 

actively form and involute their ILVs. 

 Materials and methods 
 Plasmids 
 pcDNA3.1-FLAG-hSnf7-1 full length (residues 1 – 222), pcDNA3.1-FLAG-hSnf7-1 
(residues 1 – 116) with residue two either Ser or Cys, pEGFP – hSnf7-1 – GFP, 
pEGFP-VPS4B(E235Q)-GFP, pEGFP-VPS4B-GFP, and pcDNA4-VPS4B(E235Q)-
His 6 myc were used as described previously ( Lin et al., 2005 ). Note that 
VPS4B is synonymous with SKD1. pcDNA3.1-FLAG-hSnf7-2 full length 
(residues 1 – 222) was used as described previously ( Shiels et al., 2007 ). 
Finally, a QuikChange site-directed mutagenesis kit (Stratagene) was used to 
mutate leucine 221 of GFP to lysine in hSnf7-1 – GFP to create hSnf7-1 – mGFP 
( Snapp et al., 2003 ). 
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